Latest revision as of 08:52, 19 February 2025
Information about message (contribute ) This message has no documentation.
If you know where or how this message is used, you can help other translators by adding documentation to this message.
Message definition (FACTS About Building Retrieval Augmented Generation-based Chatbots ) Active Retrieval augmented generation (FLARE) ([[#bib.bib7|7]]) iteratively synthesizes a hypothetical next sentence. If the generated sentence contains low-probability tokens, FLARE would use the sentence as the new query for retrieval and regenerate the sentence. Mialon ''et al.'' ([[#bib.bib12|12]]) reviews works for advanced augmented generation methods in language model. Self-refine ([[#bib.bib11|11]]) builds an agent to improve the initial answer of RAG through iterative feedback and refinement. ReAct ([[#bib.bib16|16]]) Agent is widely used for handling the complex queries in a recursive manner. On the RAG evaluation front, RAGAS ([[#bib.bib4|4]]) and ARES ([[#bib.bib14|14]]) utilize LLMs as judges and build automatic RAG benchmark to evaluate the RAG system. Zhu ''et al.'' ([[#bib.bib17|17]]) overview the intensive usages of LLM in a RAG pipeline including retriever, data generation, rewriter, and reader. We believe that our work provides a unique perspective on building secure enterprise-grade chatbots via our FACTS framework.
主动检索增强生成(FLARE)(7 )迭代合成假设的下一句。如果生成的句子包含低概率的词汇,FLARE将使用该句子作为新的检索查询并重新生成句子。Mialon et al. (12 )回顾了语言模型中高级增强生成方法的相关工作。Self-refine(11 )构建了一个代理,通过迭代反馈和改进来提升RAG的初始答案。ReAct(16 )代理被广泛用于以递归方式处理复杂查询。在RAG评估方面,RAGAS(4 )和ARES(14 )利用LLM作为评判者,并建立自动RAG基准来评估RAG系统。Zhu et al. (17 )概述了LLM在RAG流程中的密集使用,包括检索器、数据生成、重写器和阅读器。我们相信,通过我们的FACTS框架,我们的工作为构建安全的企业级聊天机器人提供了独特的视角。