Translations:FACTS About Building Retrieval Augmented Generation-based Chatbots/73/fr
- (1) Langchain. https://github.com/langchain-ai.
- (2) Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S., Anadkat, S., et al. Rapport technique GPT-4. arXiv preprint arXiv:2303.08774 (2023).
- (3) Barnett, S., Kurniawan, S., Thudumu, S., Brannelly, Z., et Abdelrazek, M. Sept points de défaillance lors de l'ingénierie d'un système de génération augmentée par récupération. arXiv preprint arXiv:2401.05856 (2024).
- (4) Es, S., James, J., Espinosa-Anke, L., et Schockaert, S. Ragas : Évaluation automatisée de la génération augmentée par récupération. arXiv preprint arXiv:2309.15217 (2023).
- (5) Galitsky, B. Développement de chatbots d'entreprise. Springer, 2019.
- (6) Glantz, W. 12 points de douleur RAG et solutions proposées.
- (7) Jiang, Z., Xu, F. F., Gao, L., Sun, Z., Liu, Q., Dwivedi-Yu, J., Yang, Y., Callan, J., et Neubig, G. Génération augmentée par récupération active. arXiv preprint arXiv:2305.06983 (2023).
- (8) Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M., Yih, W.-t., Rocktäschel, T., et al. Génération augmentée par récupération pour les tâches NLP intensives en connaissances. Advances in Neural Information Processing Systems 33 (2020), 9459–9474.
- (9) Liu, J. LlamaIndex. https://github.com/jerryjliu/llama_index(2022).
- (10) Liu, M., Ene, T.-D., Kirby, R., Cheng, C., Pinckney, N., Liang, R., Alben, J., Anand, H., Banerjee, S., Bayraktaroglu, I., et al. Chipnemo : LLMs adaptés au domaine pour la conception de puces. arXiv preprint arXiv:2311.00176 (2023).
- (11) Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S., Yang, Y., et al. Auto-affinage : Affinage itératif avec auto-feedback. Advances in Neural Information Processing Systems 36 (2024).
- (12) Mialon, G., Dessì, R., Lomeli, M., Nalmpantis, C., Pasunuru, R., Raileanu, R., Rozière, B., Schick, T., Dwivedi-Yu, J., Celikyilmaz, A., et al. Modèles de langage augmentés : une enquête. arXiv preprint arXiv:2302.07842 (2023).
- (13) Rebedea, T., Dinu, R., Sreedhar, M., Parisien, C., et Cohen, J. Nemo guardrails : Un kit d'outils pour des applications LLM contrôlables et sûres avec des rails programmables. arXiv preprint arXiv:2310.10501 (2023).
- (14) Saad-Falcon, J., Khattab, O., Potts, C., et Zaharia, M. Ares : Un cadre d'évaluation automatisé pour les systèmes de génération augmentée par récupération. arXiv preprint arXiv:2311.09476 (2023).
- (15) Setty, S., Jijo, K., Chung, E., et Vidra, N. Amélioration de la récupération pour les modèles de réponse aux questions basés sur RAG sur les documents financiers. arXiv preprint arXiv:2404.07221 (2024).
- (16) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., et Cao, Y. React : Synergiser le raisonnement et l'action dans les modèles de langage. arXiv preprint arXiv:2210.03629 (2022).
- (17) Zhu, Y., Yuan, H., Wang, S., Liu, J., Liu, W., Deng, C., Dou, Z., et Wen, J.-R. Grands modèles de langage pour la récupération d'informations : une enquête. arXiv preprint arXiv:2308.07107 (2023).