Translations:FACTS About Building Retrieval Augmented Generation-based Chatbots/71/en

    From Marovi AI
    Revision as of 09:55, 17 February 2025 by FuzzyBot (talk | contribs) (Importing a new version from external source)
    (diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

    In this paper, we presented our approach to developing effective RAG-based chatbots, highlighting our experiences of building three chatbots at NVIDIA. We outlined our FACTS framework, emphasizing the importance of content freshness (F), architecture (A), LLM cost (C) management, planning for testing (T), and security (S) in creating robust, secure, and enterprise-grade chatbots. We also identified and elaborated on fifteen critical control points within RAG pipelines, providing strategies to enhance chatbot performance at each stage. Furthermore, our empirical analysis reveals the trade-offs between accuracy and latency when comparing large and small LLMs. This paper offers a holistic perspective on the essential factors and practical solutions for building secure and efficient enterprise-grade chatbots, making a unique contribution to the field. More work is needed in several areas to build effective RAG-based chatbots. This includes developing agentic architectures for handling complex, multi-part, and analytical queries; efficiently summarizing large volumes of frequently updated enterprise data; incorporating auto-ML capabilities to optimize various RAG control points automatically; and creating more robust evaluation frameworks for assessing subjective responses and conversations.