All translations

Enter a message name below to show all available translations.

Message

Found 3 translations.

NameCurrent message text
 h English (en)where <math>T = {\{ o_{i \leq n},a_{i \leq n}\}} \sim \mathcal{T}_{agent}</math>, <math>x_{0} = {\phi{(o_{n})}}</math>, <math>t \sim {\mathcal{U}{(0,1)}}</math>, <math>\epsilon \sim {\mathcal{N}{(0,\mathbf{I})}}</math>, <math>x_{t} = {{\sqrt{{\overline{\alpha}}_{t}}x_{0}} + {\sqrt{1 - {\overline{\alpha}}_{t}}\epsilon}}</math>, <math>{v{(\epsilon,x_{0},t)}} = {{\sqrt{{\overline{\alpha}}_{t}}\epsilon} - {\sqrt{1 - {\overline{\alpha}}_{t}}x_{0}}}</math>, and <math>v_{\theta^{\prime}}</math> is the v-prediction output of the model <math>f_{\theta}</math>. The noise schedule <math>{\overline{\alpha}}_{t}</math> is linear, similarly to Rombach et al. ([https://arxiv.org/html/2408.14837v1#bib.bib26 2022]).
 h Spanish (es)donde <math>T = {\{ o_{i \leq n},a_{i \leq n}\}} \sim \mathcal{T}_{agente}</math>, <math>x_{0} = {\phi{(o_{n})}}</math>, <math>t \sim {\mathcal{U}{(0,1)}}</math>, <math>\epsilon \sim {\mathcal{N}{(0,\mathbf{I})}}</math>, <math>x_{t} = {\sqrt{\overline{\alpha}_{t}}x_{0} + \sqrt{1 - \overline{\alpha}_{t}}\epsilon}</math>, <math>{v(\epsilon,x_{0},t)} = {\sqrt{\overline{\alpha}_{t}}\epsilon - \sqrt{1 - \overline{\alpha}_{t}}x_{0}}</math>, y <math>v_{\theta^{\prime}}</math> es la salida de la predicción v del modelo <math>f_{\theta}</math>. El cronograma de ruido <math>{\overline{\alpha}}_{t}</math> es lineal, de forma similar a Rombach et al. ([https://arxiv.org/html/2408.14837v1#bib.bib26 2022]).
 h Chinese (zh)其中 <math>T = {\{ o_{i \leq n},a_{i \leq n}\}} \sim \mathcal{T}_{agent}</math>,<math>x_{0} = \phi{(o_{n})}</math>,<math>t \sim \mathcal{U}{(0,1)}</math>,<math>\epsilon \sim \mathcal{N}{(0,\mathbf{I})}</math>,<math>x_{t} = {\sqrt{\overline{\alpha}_{t}}x_{0} + \sqrt{1 - \overline{\alpha}_{t}}\epsilon}</math>,<math>v{(\epsilon,x_{0},t)} = {\sqrt{\overline{\alpha}_{t}}\epsilon - \sqrt{1 - \overline{\alpha}_{t}}x_{0}}</math>,而 <math>v_{\theta^{\prime}}</math> 是模型 <math>f_{\theta}</math> 的 v预测输出。噪声调度 <math>\overline{\alpha}_{t}</math> 是线性的,与 Rombach 等([https://arxiv.org/html/2408.14837v1#bib.bib26 2022])类似。