Translations:Diffusion Models Are Real-Time Game Engines/79/en

    From Marovi AI
    Revision as of 03:06, 7 September 2024 by FuzzyBot (talk | contribs) (Importing a new version from external source)
    (diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

    Simulating visual and physical processes of 2D and 3D environments and allowing interactive exploration of them is an extensively developed field in computer graphics (Akenine-Möller et al., 2018). Game Engines, such as Unreal and Unity, are software that processes representations of scene geometry and renders a stream of images in response to user interactions. The game engine is responsible for keeping track of all world state, e.g., the player position and movement, objects, character animation, and lighting. It also tracks the game logic, e.g., points gained by accomplishing game objectives. Film and television productions use variants of ray-tracing (Shirley & Morley, 2008), which are too slow and compute-intensive for real-time applications. In contrast, game engines must keep a very high frame rate (typically 30-60 FPS), and therefore rely on highly-optimized polygon rasterization, often accelerated by GPUs. Physical effects such as shadows, particles, and lighting are often implemented using efficient heuristics rather than physically accurate simulation.