Translations:Diffusion Models Are Real-Time Game Engines/31/en: Difference between revisions
(Importing a new version from external source) |
(Importing a new version from external source) |
||
Line 1: | Line 1: | ||
where <math>T = {\{ o_{i \leq n},a_{i \leq n}\}} \sim \mathcal{T}_{agent}</math>, <math>x_{0} = {\phi{(o_{n})}}</math>, <math>t \sim {\mathcal{U}{(0,1)}}</math>, <math>\epsilon \sim {\mathcal{N}{(0,\mathbf{I})}}</math>, <math>x_{t} = {{\sqrt{{\overline{\alpha}}_{t}}x_{0}} + {\sqrt{1 - {\overline{\alpha}}_{t}}\epsilon}}</math>, <math>{v{(\epsilon,x_{0},t)}} = {{\sqrt{{\overline{\alpha}}_{t}}\epsilon} - {\sqrt{1 - {\overline{\alpha}}_{t}}x_{0}}}</math>, and <math>v_{\theta^{\prime}}</math> is the v-prediction output of the model <math>f_{\theta}</math>. The noise schedule <math>{\overline{\alpha}}_{t}</math> is linear, similarly to Rombach | where <math>T = {\{ o_{i \leq n},a_{i \leq n}\}} \sim \mathcal{T}_{agent}</math>, <math>x_{0} = {\phi{(o_{n})}}</math>, <math>t \sim {\mathcal{U}{(0,1)}}</math>, <math>\epsilon \sim {\mathcal{N}{(0,\mathbf{I})}}</math>, <math>x_{t} = {{\sqrt{{\overline{\alpha}}_{t}}x_{0}} + {\sqrt{1 - {\overline{\alpha}}_{t}}\epsilon}}</math>, <math>{v{(\epsilon,x_{0},t)}} = {{\sqrt{{\overline{\alpha}}_{t}}\epsilon} - {\sqrt{1 - {\overline{\alpha}}_{t}}x_{0}}}</math>, and <math>v_{\theta^{\prime}}</math> is the v-prediction output of the model <math>f_{\theta}</math>. The noise schedule <math>{\overline{\alpha}}_{t}</math> is linear, similarly to Rombach et al. ([https://arxiv.org/html/2408.14837v1#bib.bib26 2022]). |
Latest revision as of 03:06, 7 September 2024
where , , , , , , and is the v-prediction output of the model . The noise schedule is linear, similarly to Rombach et al. (2022).