Translations:Diffusion Models Are Real-Time Game Engines/56/en: Difference between revisions

    From Marovi AI
    (Importing a new version from external source)
     
    (Importing a new version from external source)
     
    Line 1: Line 1:
    '''Video Quality.''' We use the auto-regressive setup described in Section [https://arxiv.org/html/2408.14837v1#S2 2], where we iteratively sample frames following the sequences of actions defined by the ground-truth trajectory, while conditioning the model on its own past predictions. When sampled auto-regressively, the predicted and ground-truth trajectories often diverge after a few steps, mostly due to the accumulation of small amounts of different movement velocities between frames in each trajectory. For that reason, per-frame PSNR and LPIPS values gradually decrease and increase respectively, as can be seen in Figure [https://arxiv.org/html/2408.14837v1#S5.F6 6]. The predicted trajectory is still similar to the actual game in terms of content and image quality, but per-frame metrics are limited in their ability to capture this (see Appendix [https://arxiv.org/html/2408.14837v1#A1.SS1 A.1] for samples of auto-regressively generated trajectories).
    '''Video Quality.''' We use the auto-regressive setup described in Section [https://arxiv.org/html/2408.14837v1#S2 2], where we iteratively sample frames following the sequences of actions defined by the ground-truth trajectory, while conditioning the model on its own past predictions. When sampled auto-regressively, the predicted and ground-truth trajectories often diverge after a few steps, mostly due to the accumulation of small amounts of different movement velocities between frames in each trajectory. For that reason, per-frame PSNR and LPIPS values gradually decrease and increase respectively, as can be seen in Figure [https://arxiv.org/html/2408.14837v1#S5.F6 6]. The predicted trajectory is still similar to the actual game in terms of content and image quality, but per-frame metrics are limited in their ability to capture this (see Appendix [https://arxiv.org/html/2408.14837v1#A1.SS1 A.1] for samples of auto-regressively generated trajectories).

    Latest revision as of 03:06, 7 September 2024

    Information about message (contribute)
    This message has no documentation. If you know where or how this message is used, you can help other translators by adding documentation to this message.
    Message definition (Diffusion Models Are Real-Time Game Engines)
    '''Video Quality.''' We use the auto-regressive setup described in Section [https://arxiv.org/html/2408.14837v1#S2 2], where we iteratively sample frames following the sequences of actions defined by the ground-truth trajectory, while conditioning the model on its own past predictions. When sampled auto-regressively, the predicted and ground-truth trajectories often diverge after a few steps, mostly due to the accumulation of small amounts of different movement velocities between frames in each trajectory. For that reason, per-frame PSNR and LPIPS values gradually decrease and increase respectively, as can be seen in Figure [https://arxiv.org/html/2408.14837v1#S5.F6 6]. The predicted trajectory is still similar to the actual game in terms of content and image quality, but per-frame metrics are limited in their ability to capture this (see Appendix [https://arxiv.org/html/2408.14837v1#A1.SS1 A.1] for samples of auto-regressively generated trajectories).

    Video Quality. We use the auto-regressive setup described in Section 2, where we iteratively sample frames following the sequences of actions defined by the ground-truth trajectory, while conditioning the model on its own past predictions. When sampled auto-regressively, the predicted and ground-truth trajectories often diverge after a few steps, mostly due to the accumulation of small amounts of different movement velocities between frames in each trajectory. For that reason, per-frame PSNR and LPIPS values gradually decrease and increase respectively, as can be seen in Figure 6. The predicted trajectory is still similar to the actual game in terms of content and image quality, but per-frame metrics are limited in their ability to capture this (see Appendix A.1 for samples of auto-regressively generated trajectories).