Translations:Diffusion Models Are Real-Time Game Engines/54/en: Difference between revisions

    From Marovi AI
    (Importing a new version from external source)
     
    (Importing a new version from external source)
     
    Line 1: Line 1:
    '''Image Quality.''' We measure LPIPS (Zhang et al., [https://arxiv.org/html/2408.14837v1#bib.bib40 2018]) and PSNR using the teacher-forcing setup described in Section [https://arxiv.org/html/2408.14837v1#S2 2], where we sample an initial state and predict a single frame based on a trajectory of ground-truth past observations. When evaluated over a random holdout of 2048 trajectories taken in 5 different levels, our model achieves a PSNR of <math>29.43</math> and an LPIPS of <math>0.249</math>. The PSNR value is similar to lossy JPEG compression with quality settings of 20-30 (Petric & Milinkovic, [https://arxiv.org/html/2408.14837v1#bib.bib22 2018]). Figure [https://arxiv.org/html/2408.14837v1#S5.F5 5] shows examples of model predictions and the corresponding ground truth samples.
    '''Image Quality.''' We measure LPIPS (Zhang et al., [https://arxiv.org/html/2408.14837v1#bib.bib40 2018]) and PSNR using the teacher-forcing setup described in Section [https://arxiv.org/html/2408.14837v1#S2 2], where we sample an initial state and predict a single frame based on a trajectory of ground-truth past observations. When evaluated over a random holdout of 2048 trajectories taken in 5 different levels, our model achieves a PSNR of <math>29.43</math> and an LPIPS of <math>0.249</math>. The PSNR value is similar to lossy JPEG compression with quality settings of 20-30 (Petric & Milinkovic, [https://arxiv.org/html/2408.14837v1#bib.bib22 2018]). Figure [https://arxiv.org/html/2408.14837v1#S5.F5 5] shows examples of model predictions and the corresponding ground truth samples.

    Latest revision as of 03:06, 7 September 2024

    Information about message (contribute)
    This message has no documentation. If you know where or how this message is used, you can help other translators by adding documentation to this message.
    Message definition (Diffusion Models Are Real-Time Game Engines)
    '''Image Quality.''' We measure LPIPS (Zhang et al., [https://arxiv.org/html/2408.14837v1#bib.bib40 2018]) and PSNR using the teacher-forcing setup described in Section [https://arxiv.org/html/2408.14837v1#S2 2], where we sample an initial state and predict a single frame based on a trajectory of ground-truth past observations. When evaluated over a random holdout of 2048 trajectories taken in 5 different levels, our model achieves a PSNR of <math>29.43</math> and an LPIPS of <math>0.249</math>. The PSNR value is similar to lossy JPEG compression with quality settings of 20-30 (Petric & Milinkovic, [https://arxiv.org/html/2408.14837v1#bib.bib22 2018]). Figure [https://arxiv.org/html/2408.14837v1#S5.F5 5] shows examples of model predictions and the corresponding ground truth samples.

    Image Quality. We measure LPIPS (Zhang et al., 2018) and PSNR using the teacher-forcing setup described in Section 2, where we sample an initial state and predict a single frame based on a trajectory of ground-truth past observations. When evaluated over a random holdout of 2048 trajectories taken in 5 different levels, our model achieves a PSNR of and an LPIPS of . The PSNR value is similar to lossy JPEG compression with quality settings of 20-30 (Petric & Milinkovic, 2018). Figure 5 shows examples of model predictions and the corresponding ground truth samples.