Translations:Diffusion Models Are Real-Time Game Engines/36/en: Difference between revisions

    From Marovi AI
    (Importing a new version from external source)
     
    (Importing a new version from external source)
     
    Line 1: Line 1:
    The pre-trained auto-encoder of Stable Diffusion v1.4, which compresses 8x8 pixel patches into 4 latent channels, results in meaningful artifacts when predicting game frames, which affect small details and particularly the bottom bar HUD (“heads up display”). To leverage the pre-trained knowledge while improving image quality, we train just the decoder of the latent auto-encoder using an MSE loss computed against the target frame pixels. It might be possible to improve quality even further using a perceptual loss such as LPIPS (Zhang et al. ([https://arxiv.org/html/2408.14837v1#bib.bib40 2018])), which we leave to future work. Importantly, note that this fine-tuning process happens completely separately from the U-Net fine-tuning, and that notably the auto-regressive generation isn’t affected by it (we only condition auto-regressively on the latents, not the pixels). Appendix [https://arxiv.org/html/2408.14837v1#A1.SS2 A.2] shows examples of generations with and without fine-tuning the auto-encoder.
    The pre-trained auto-encoder of Stable Diffusion v1.4, which compresses 8x8 pixel patches into 4 latent channels, results in meaningful artifacts when predicting game frames, which affect small details and particularly the bottom bar HUD (“heads up display”). To leverage the pre-trained knowledge while improving image quality, we train just the decoder of the latent auto-encoder using an MSE loss computed against the target frame pixels. It might be possible to improve quality even further using a perceptual loss such as LPIPS (Zhang et al. ([https://arxiv.org/html/2408.14837v1#bib.bib40 2018])), which we leave to future work. Importantly, note that this fine-tuning process happens completely separately from the U-Net fine-tuning, and that notably the auto-regressive generation isn’t affected by it (we only condition auto-regressively on the latents, not the pixels). Appendix [https://arxiv.org/html/2408.14837v1#A1.SS2 A.2] shows examples of generations with and without fine-tuning the auto-encoder.

    Latest revision as of 03:06, 7 September 2024

    Information about message (contribute)
    This message has no documentation. If you know where or how this message is used, you can help other translators by adding documentation to this message.
    Message definition (Diffusion Models Are Real-Time Game Engines)
    The pre-trained auto-encoder of Stable Diffusion v1.4, which compresses 8x8 pixel patches into 4 latent channels, results in meaningful artifacts when predicting game frames, which affect small details and particularly the bottom bar HUD (“heads up display”). To leverage the pre-trained knowledge while improving image quality, we train just the decoder of the latent auto-encoder using an MSE loss computed against the target frame pixels. It might be possible to improve quality even further using a perceptual loss such as LPIPS (Zhang et al. ([https://arxiv.org/html/2408.14837v1#bib.bib40 2018])), which we leave to future work. Importantly, note that this fine-tuning process happens completely separately from the U-Net fine-tuning, and that notably the auto-regressive generation isn’t affected by it (we only condition auto-regressively on the latents, not the pixels). Appendix [https://arxiv.org/html/2408.14837v1#A1.SS2 A.2] shows examples of generations with and without fine-tuning the auto-encoder.

    The pre-trained auto-encoder of Stable Diffusion v1.4, which compresses 8x8 pixel patches into 4 latent channels, results in meaningful artifacts when predicting game frames, which affect small details and particularly the bottom bar HUD (“heads up display”). To leverage the pre-trained knowledge while improving image quality, we train just the decoder of the latent auto-encoder using an MSE loss computed against the target frame pixels. It might be possible to improve quality even further using a perceptual loss such as LPIPS (Zhang et al. (2018)), which we leave to future work. Importantly, note that this fine-tuning process happens completely separately from the U-Net fine-tuning, and that notably the auto-regressive generation isn’t affected by it (we only condition auto-regressively on the latents, not the pixels). Appendix A.2 shows examples of generations with and without fine-tuning the auto-encoder.