Translations:Diffusion Models Are Real-Time Game Engines/31/en: Difference between revisions

    From Marovi AI
    (Importing a new version from external source)
     
    (Importing a new version from external source)
     
    Line 1: Line 1:
    where <math>T = {\{ o_{i \leq n},a_{i \leq n}\}} \sim \mathcal{T}_{agent}</math>, <math>x_{0} = {\phi{(o_{n})}}</math>, <math>t \sim {\mathcal{U}{(0,1)}}</math>, <math>\epsilon \sim {\mathcal{N}{(0,\mathbf{I})}}</math>, <math>x_{t} = {{\sqrt{{\overline{\alpha}}_{t}}x_{0}} + {\sqrt{1 - {\overline{\alpha}}_{t}}\epsilon}}</math>, <math>{v{(\epsilon,x_{0},t)}} = {{\sqrt{{\overline{\alpha}}_{t}}\epsilon} - {\sqrt{1 - {\overline{\alpha}}_{t}}x_{0}}}</math>, and <math>v_{\theta^{\prime}}</math> is the v-prediction output of the model <math>f_{\theta}</math>. The noise schedule <math>{\overline{\alpha}}_{t}</math> is linear, similarly to Rombach et al. ([https://arxiv.org/html/2408.14837v1#bib.bib26 2022]).
    where <math>T = {\{ o_{i \leq n},a_{i \leq n}\}} \sim \mathcal{T}_{agent}</math>, <math>x_{0} = {\phi{(o_{n})}}</math>, <math>t \sim {\mathcal{U}{(0,1)}}</math>, <math>\epsilon \sim {\mathcal{N}{(0,\mathbf{I})}}</math>, <math>x_{t} = {{\sqrt{{\overline{\alpha}}_{t}}x_{0}} + {\sqrt{1 - {\overline{\alpha}}_{t}}\epsilon}}</math>, <math>{v{(\epsilon,x_{0},t)}} = {{\sqrt{{\overline{\alpha}}_{t}}\epsilon} - {\sqrt{1 - {\overline{\alpha}}_{t}}x_{0}}}</math>, and <math>v_{\theta^{\prime}}</math> is the v-prediction output of the model <math>f_{\theta}</math>. The noise schedule <math>{\overline{\alpha}}_{t}</math> is linear, similarly to Rombach et al. ([https://arxiv.org/html/2408.14837v1#bib.bib26 2022]).

    Latest revision as of 03:06, 7 September 2024

    Information about message (contribute)
    This message has no documentation. If you know where or how this message is used, you can help other translators by adding documentation to this message.
    Message definition (Diffusion Models Are Real-Time Game Engines)
    where <math>T = {\{ o_{i \leq n},a_{i \leq n}\}} \sim \mathcal{T}_{agent}</math>, <math>x_{0} = {\phi{(o_{n})}}</math>, <math>t \sim {\mathcal{U}{(0,1)}}</math>, <math>\epsilon \sim {\mathcal{N}{(0,\mathbf{I})}}</math>, <math>x_{t} = {{\sqrt{{\overline{\alpha}}_{t}}x_{0}} + {\sqrt{1 - {\overline{\alpha}}_{t}}\epsilon}}</math>, <math>{v{(\epsilon,x_{0},t)}} = {{\sqrt{{\overline{\alpha}}_{t}}\epsilon} - {\sqrt{1 - {\overline{\alpha}}_{t}}x_{0}}}</math>, and <math>v_{\theta^{\prime}}</math> is the v-prediction output of the model <math>f_{\theta}</math>. The noise schedule <math>{\overline{\alpha}}_{t}</math> is linear, similarly to Rombach et al. ([https://arxiv.org/html/2408.14837v1#bib.bib26 2022]).

    where , , , , , , and is the v-prediction output of the model . The noise schedule is linear, similarly to Rombach et al. (2022).