Translations:FACTS About Building Retrieval Augmented Generation-based Chatbots/22/en: Difference between revisions

    From Marovi AI
    (Importing a new version from external source)
     
    (No difference)

    Latest revision as of 09:55, 17 February 2025

    Information about message (contribute)
    This message has no documentation. If you know where or how this message is used, you can help other translators by adding documentation to this message.
    Message definition (FACTS About Building Retrieval Augmented Generation-based Chatbots)
    Retrieval Augmented Generation (RAG) is a process where relevant information is retrieved from vector databases through semantic matching and then fed to LLMs for response generation. In a RAG pipeline, vector databases and LLMs collaboratively ensure the delivery of up-to-date enterprise knowledge. However, RAG pipelines have many control points, each of which when not tuned well can lead to lower accuracy, hallucinations, and irrelevant responses by Chatbots. Additionally, document access control permissions complicate the search and retrieval process, requiring careful management to ensure data security and relevance. Furthermore, multi-modal content necessitates the use of multi-modal retrievers to handle structured, unstructured, and semi-structured data, including presentations, diagrams, videos, and meeting recordings. Addressing these challenges is critical for maintaining the accuracy and reliability of enterprise chatbots. Inspired by ([[#bib.bib3|3]]), we identify fifteen control points of RAG from our case studies visualized in Figure [[#S2.F1|1]]. Each control point is labeled with a number. In the remainder of this section, we present our insights and learnings for addressing RAG control points.

    Retrieval Augmented Generation (RAG) is a process where relevant information is retrieved from vector databases through semantic matching and then fed to LLMs for response generation. In a RAG pipeline, vector databases and LLMs collaboratively ensure the delivery of up-to-date enterprise knowledge. However, RAG pipelines have many control points, each of which when not tuned well can lead to lower accuracy, hallucinations, and irrelevant responses by Chatbots. Additionally, document access control permissions complicate the search and retrieval process, requiring careful management to ensure data security and relevance. Furthermore, multi-modal content necessitates the use of multi-modal retrievers to handle structured, unstructured, and semi-structured data, including presentations, diagrams, videos, and meeting recordings. Addressing these challenges is critical for maintaining the accuracy and reliability of enterprise chatbots. Inspired by (3), we identify fifteen control points of RAG from our case studies visualized in Figure 1. Each control point is labeled with a number. In the remainder of this section, we present our insights and learnings for addressing RAG control points.