Translations:Diffusion Models Are Real-Time Game Engines/24/en: Difference between revisions

    From Marovi AI
    (Importing a new version from external source)
     
    (No difference)

    Latest revision as of 05:27, 1 September 2024

    Information about message (contribute)
    This message has no documentation. If you know where or how this message is used, you can help other translators by adding documentation to this message.
    Message definition (Diffusion Models Are Real-Time Game Engines)
    Our end goal is to have human players interact with our simulation. To that end, the policy <math>\pi</math> as in Section [https://arxiv.org/html/2408.14837v1#S2 2] is that of ''human gameplay''. Since we cannot sample from that directly at scale, we start by approximating it via teaching an automatic agent to play. Unlike a typical RL setup which attempts to maximize game score, our goal is to generate training data which resembles human play, or at least contains enough diverse examples, in a variety of scenarios, to maximize training data efficiency. To that end, we design a simple reward function, which is the only part of our method that is environment-specific (see Appendix [https://arxiv.org/html/2408.14837v1#A1.SS3 A.3]).

    Our end goal is to have human players interact with our simulation. To that end, the policy as in Section 2 is that of human gameplay. Since we cannot sample from that directly at scale, we start by approximating it via teaching an automatic agent to play. Unlike a typical RL setup which attempts to maximize game score, our goal is to generate training data which resembles human play, or at least contains enough diverse examples, in a variety of scenarios, to maximize training data efficiency. To that end, we design a simple reward function, which is the only part of our method that is environment-specific (see Appendix A.3).