Translations:FACTS About Building Retrieval Augmented Generation-based Chatbots/73/es: Difference between revisions

    From Marovi AI
    (Importing a new version from external source)
    (No difference)

    Revision as of 08:27, 19 February 2025

    Information about message (contribute)
    This message has no documentation. If you know where or how this message is used, you can help other translators by adding documentation to this message.
    Message definition (FACTS About Building Retrieval Augmented Generation-based Chatbots)
    * <span id="bib.bib1">(1)</span> Langchain. ''https://github.com/langchain-ai''.
    * <span id="bib.bib2">(2)</span> Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S., Anadkat, S., et al. GPT-4 technical report. ''arXiv preprint arXiv:2303.08774'' (2023).
    * <span id="bib.bib3">(3)</span> Barnett, S., Kurniawan, S., Thudumu, S., Brannelly, Z., and Abdelrazek, M. Seven failure points when engineering a retrieval augmented generation system. ''arXiv preprint arXiv:2401.05856'' (2024).
    * <span id="bib.bib4">(4)</span> Es, S., James, J., Espinosa-Anke, L., and Schockaert, S. Ragas: Automated evaluation of retrieval augmented generation. ''arXiv preprint arXiv:2309.15217'' (2023).
    * <span id="bib.bib5">(5)</span> Galitsky, B. ''Developing enterprise chatbots''. Springer, 2019.
    * <span id="bib.bib6">(6)</span> Glantz, W. 12 rag pain points and proposed solutions.
    * <span id="bib.bib7">(7)</span> Jiang, Z., Xu, F. F., Gao, L., Sun, Z., Liu, Q., Dwivedi-Yu, J., Yang, Y., Callan, J., and Neubig, G. Active retrieval augmented generation. ''arXiv preprint arXiv:2305.06983'' (2023).
    * <span id="bib.bib8">(8)</span> Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M., Yih, W.-t., Rocktäschel, T., et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. ''Advances in Neural Information Processing Systems 33'' (2020), 9459–9474.
    * <span id="bib.bib9">(9)</span> Liu, J. LlamaIndex. ''https://github.com/jerryjliu/llama_index''(2022).
    * <span id="bib.bib10">(10)</span> Liu, M., Ene, T.-D., Kirby, R., Cheng, C., Pinckney, N., Liang, R., Alben, J., Anand, H., Banerjee, S., Bayraktaroglu, I., et al. Chipnemo: Domain-adapted llms for chip design. ''arXiv preprint arXiv:2311.00176'' (2023).
    * <span id="bib.bib11">(11)</span> Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S., Yang, Y., et al. Self-refine: Iterative refinement with self-feedback. ''Advances in Neural Information Processing Systems 36'' (2024).
    * <span id="bib.bib12">(12)</span> Mialon, G., Dessì, R., Lomeli, M., Nalmpantis, C., Pasunuru, R., Raileanu, R., Rozière, B., Schick, T., Dwivedi-Yu, J., Celikyilmaz, A., et al. Augmented language models: a survey. ''arXiv preprint arXiv:2302.07842'' (2023).
    * <span id="bib.bib13">(13)</span> Rebedea, T., Dinu, R., Sreedhar, M., Parisien, C., and Cohen, J. Nemo guardrails: A toolkit for controllable and safe llm applications with programmable rails. ''arXiv preprint arXiv:2310.10501'' (2023).
    * <span id="bib.bib14">(14)</span> Saad-Falcon, J., Khattab, O., Potts, C., and Zaharia, M. Ares: An automated evaluation framework for retrieval-augmented generation systems. ''arXiv preprint arXiv:2311.09476'' (2023).
    * <span id="bib.bib15">(15)</span> Setty, S., Jijo, K., Chung, E., and Vidra, N. Improving retrieval for rag based question answering models on financial documents. ''arXiv preprint arXiv:2404.07221'' (2024).
    * <span id="bib.bib16">(16)</span> Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., and Cao, Y. React: Synergizing reasoning and acting in language models. ''arXiv preprint arXiv:2210.03629'' (2022).
    * <span id="bib.bib17">(17)</span> Zhu, Y., Yuan, H., Wang, S., Liu, J., Liu, W., Deng, C., Dou, Z., and Wen, J.-R. Large language models for information retrieval: A survey. ''arXiv preprint arXiv:2308.07107'' (2023).
    • (1) Langchain. https://github.com/langchain-ai.
    • (2) Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S., Anadkat, S., et al. Informe técnico de GPT-4. arXiv preprint arXiv:2303.08774 (2023).
    • (3) Barnett, S., Kurniawan, S., Thudumu, S., Brannelly, Z., y Abdelrazek, M. Siete puntos de fallo al diseñar un sistema de generación aumentada por recuperación. arXiv preprint arXiv:2401.05856 (2024).
    • (4) Es, S., James, J., Espinosa-Anke, L., y Schockaert, S. Ragas: Evaluación automatizada de generación aumentada por recuperación. arXiv preprint arXiv:2309.15217 (2023).
    • (5) Galitsky, B. Desarrollando chatbots empresariales. Springer, 2019.
    • (6) Glantz, W. 12 puntos de dolor de rag y soluciones propuestas.
    • (7) Jiang, Z., Xu, F. F., Gao, L., Sun, Z., Liu, Q., Dwivedi-Yu, J., Yang, Y., Callan, J., y Neubig, G. Generación aumentada por recuperación activa. arXiv preprint arXiv:2305.06983 (2023).
    • (8) Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M., Yih, W.-t., Rocktäschel, T., et al. Generación aumentada por recuperación para tareas de PNL intensivas en conocimiento. Advances in Neural Information Processing Systems 33 (2020), 9459–9474.
    • (9) Liu, J. LlamaIndex. https://github.com/jerryjliu/llama_index(2022).
    • (10) Liu, M., Ene, T.-D., Kirby, R., Cheng, C., Pinckney, N., Liang, R., Alben, J., Anand, H., Banerjee, S., Bayraktaroglu, I., et al. Chipnemo: LLMs adaptados al dominio para el diseño de chips. arXiv preprint arXiv:2311.00176 (2023).
    • (11) Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S., Yang, Y., et al. Auto-refinamiento: Refinamiento iterativo con retroalimentación propia. Advances in Neural Information Processing Systems 36 (2024).
    • (12) Mialon, G., Dessì, R., Lomeli, M., Nalmpantis, C., Pasunuru, R., Raileanu, R., Rozière, B., Schick, T., Dwivedi-Yu, J., Celikyilmaz, A., et al. Modelos de lenguaje aumentados: una encuesta. arXiv preprint arXiv:2302.07842 (2023).
    • (13) Rebedea, T., Dinu, R., Sreedhar, M., Parisien, C., y Cohen, J. Nemo guardrails: Un kit de herramientas para aplicaciones LLM controlables y seguras con rieles programables. arXiv preprint arXiv:2310.10501 (2023).
    • (14) Saad-Falcon, J., Khattab, O., Potts, C., y Zaharia, M. Ares: Un marco de evaluación automatizado para sistemas de generación aumentada por recuperación. arXiv preprint arXiv:2311.09476 (2023).
    • (15) Setty, S., Jijo, K., Chung, E., y Vidra, N. Mejorando la recuperación para modelos de respuesta a preguntas basados en rag en documentos financieros. arXiv preprint arXiv:2404.07221 (2024).
    • (16) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., y Cao, Y. React: Sinergizando el razonamiento y la actuación en modelos de lenguaje. arXiv preprint arXiv:2210.03629 (2022).
    • (17) Zhu, Y., Yuan, H., Wang, S., Liu, J., Liu, W., Deng, C., Dou, Z., y Wen, J.-R. Modelos de lenguaje grandes para la recuperación de información: una encuesta. arXiv preprint arXiv:2308.07107 (2023).